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Abstract

The interaction between a charged membrane bilayer surface and an electrolyte

solution causes the formation of an electrical double layer, which has been a

subject of extensive study for more than a century. This chapter provides a

statistical mechanical description of orientational ordering of water molecules

and of excluded volume effect of ions near the charged membrane surface. The

space variation of the permittivity of the electrolyte solution near the charged

membrane surface obtained by statistical mechanical model is then included in

a phenomenological model for the membrane surface potential for highly

charged membranes.
vier Inc.
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1. Introduction

The contact between a negatively charged bilayer membrane surface
and an electrolyte solution implies a particular ion distribution and water
orientation near the charged surface. In other words, an electrical double
layer (EDL) [1–4] is formed.

Within the so-called Poisson–Boltzmann (PB) theory [2,3,5,6], the ions
in electrolyte solution are treated as dimensionless, while uniform permit-
tivity of the electrolyte solution is assumed. The Stern model [4] was the
first attempt to incorporate finite size of ions in EDL theory by combining
the Helmholtz [1] and Gouy–Chapman [2,3] model. Helmholtz treated the
double layer mathematically as a simple capacitor, based on a physical model
in which a layer of ions with a single layer of solvent around each ion is
adsorbed to the surface. Gouy [2] and Chapman [3] considered the thermal
motion of ions and pictured a diffuse double layer composed of ions of
opposite charge (counterions) attracted to the surface and ions of the same
charge (coions) repelled from it. Ions are embedded in a dielectric contin-
uum while the electric potential is subject to the PB differential
equation [6–9]. Generally, Stern model [4] consists of an inner Helmholtz
plane (coions bound near the surface due to specific adsorption), the so-
called outer Helmholtz plane (hydrated counterions at the distance of closest
approach), and a diffuse double layer.

Most of the theoretical models describing EDL assume that the permit-
tivity in the whole system is constant. But actually, close to the charged
surface, due to accumulation of counterions near the charged surface, the
water molecules are partially depleted from this region [8]. The water
dipoles show a distinct preferential orientation in the direction perpendicu-
lar to the charged surface [10–14]. All these result in a spatial variation of the
permittivity near the charged surface [12,13,15]. In this work, we present
different models of EDL, which take into account the spatial variation of
permittivity. The orientational ordering of water molecules and excluded
volume effect near the planar bilayer membrane surface are described within
the modified PB theory. The results of this theory are then included in a
generalized phenomenological PB model via the space dependency of the
permittivity near the charged planar surface.

2. Orientation of Water Molecules near a

Charged Membrane Surface

The distribution of ions in the electrolyte solution close to the
charged membrane surface is described within the PB theory [6,16] by
the competition between the electrostatic interactions and the entropy of
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the ions in the solution. Due to the electrostatic forces between
the charged surface and the ions in the solution, the counterions (the
ions with the charge of the opposite sign than the charged surface)
are accumulated close to the surface and the coions (the ions with
the charge of the same sign than the surface) are depleted from the surface
[6]. Near the charged surface, water molecules show a distinct preferential
orientation and a strongly reduced permittivity [11]. In this section,
the PB theory modified by orientational ordering of water is briefly
described. In the model, the finite volumes of ions in the electrolyte
solution (i.e., the excluded volume) are not taken into account. Therefore,
the predictions of the model are restricted to the cases of low
surface charge densities and low bulk ionic strengths when accumulation
of the counterions near charged membrane surface is not very
pronounced.

We consider a planar charged membrane bilayer surface in contact with
solution of ions and water (Langevin) dipoles. The Langevin dipoles
describe a water molecule with a nonzero dipole moment (p). The mem-
brane bilayer surface bears charge with surface charge density s. We assume
that counterions and coions are distributed according to the Boltzmann
distribution functions [6,11,16]

nþ xð Þ ¼ n0e
�C; n� xð Þ ¼ n0e

C; ð1Þ

while the number density of water molecules (nw(x)) is assumed to be
constant everywhere in the electrolyte solution and equal to its bulk value
(n0w):

nw xð Þ ¼ n0w: ð2Þ

Here nþ(x) and n�(x) are the number densities of counterions and
coions, respectively and

C xð Þ ¼ e0f xð Þ=kT ð3Þ

is the reduced electrostatic potential, f(x) is the electrostatic potential, e0 is
the elementary charge, kT is the thermal energy, and n0 is the bulk number
density of positively and negatively charged ions in electrolyte solution. The
axis x is perpendicular to the membrane surface and points in the direction
of bulk solution.
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The charges of counterions, coions, and water molecules (Langevin
dipoles) contribute to the average microscopic volume charge density:

% xð Þ ¼ e0 nþ xð Þ � n� xð Þð Þ � dP

dx
: ð4Þ

The polarization P is given by

P xð Þ ¼ n0w p x;oð Þh iB; ð5Þ

where p is the water (Langevin) dipole moment and hp(x,o)iB is its average
over the angle distribution in thermal equilibrium. P(x) is positive if the
polarization vector P points in the direction of x-axis and negative if P
points in the direction pointing from bulk to the charged membrane
surface. According to the Boltzmann function law [5], the relative proba-
bility of finding the water dipole in an element of the angle dO ¼ 2p
sin o do is proportional to the Boltzmann factor exp(�Wd/kT), where

Wd ¼ �p�E ¼ p�rf ¼ kT=e0ð Þp0jC
0 j cos oð Þ ð6Þ

is the energy of the water (Langevin) dipole p in the electric field E¼�rf
and o is the angle between the dipole moment vector p and the vectorrf.
Hence

p x;oð Þh iB ¼
Ð p
0
p0 cos o exp �p0jC0 j cos o=e0

� �
2p sin odoÐ p

0
exp �p0jC0 j cos o=e0
� �

2p sin odo

¼
p0
Ð p
0
cos o exp �p0jC0 j cos o=e0

� �
d cos oð ÞÐ p

0
exp �p0jC0 j cos o=e0
� �

d cos oð Þ

¼ �p0 coth
p0jC0 j
e0

 !
� e0

p0jC0 j

0
@

1
A ¼ �p0ℒ

p0jC0 j
e0

 !
;

ð7Þ

where p0 is the magnitude of the water dipole moment. The function
ℒ(u) ¼ (coth(u) � 1/u) is the Langevin function. The Langevin function
ℒ(p0jC 0j/e0) describes the average magnitude of the Langevin dipole
moments at given x. In our derivation we assumed the azimuthal symmetry.
Inserting the ion Boltzmann distribution functions Eq. (1) and expression
for polarization (Eq. (5)) into Eq. (4), we get the expression for the volume
charge density in electrolyte solution:

% xð Þ ¼ �2e0n0 sinh Cþ n0wp0
d

dx
ℒ p0jC0 j=e0
� �h i

: ð8Þ
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Inserting the above expression for volume charge density %(x) (Eq. (8))
into Poisson equation

C
00 ¼ �4plB%=e0; ð9Þ

we get:

C
00 ¼ 4plB 2n0 sinhC� n0w

p0

e0

d

dx
ℒ p0jC0 j=e0
� �h i� �

; ð10Þ

where lB is the Bjerrum length:

lB ¼ e20=4pe0kT ð11Þ

and e0 the permittivity of the free space. Dipolar PB differential
equation (10) is subject to two boundary conditions. The first boundary
condition is obtained by integrating the differential equation (10):

C
0
x ¼ 0ð Þ ¼ � 4plB

e0
sþ n0wp0ℒ p0jC0 j=e0

� �
jx¼0

h i
: ð12Þ

The condition requiring electroneutrality of the whole system was taken
into account in the derivation of Eq. (12). The second boundary condition is

C
0
x ! 1ð Þ ¼ 0: ð13Þ

Based on Eqs. (5)–(7), we can express the relative permittivity of the
electrolyte solution (e ¼ er) in contact with the planar charged membrane
bilayer surface as [17]

e ¼ 1þ 1

e0

djPj
dE

¼ 1þ n0w
p0

e0

d ℒ p0E=kTð Þð Þ
dE

: ð14Þ

while the corresponding effective permittivity (eeff) can be defined as

eeff ¼ 1þ jPj
e0E

¼ 1þ n0w
p0

e0

ℒ p0E=kTð Þ
E

; ð15Þ

where E ¼ jf0j is the magnitude of electric field strength.
Figure 1 shows the dependence of the effective permittivity eeff on the

magnitude of the electric field strength E calculated within the PB theory
(Eq. (15) which takes into account the orientational ordering of water
molecules by considering them as Langevin dipoles. The excluded volume
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Figure 1 Calculated effective permittivity (see Eq. (15) as a function of the magnitude
of electric field strength E ¼ jf0j. The dipole moment of the water Langevin dipoles
p0 ¼ 5D, bulk concentration of water dipoles is n0w/NA ¼ 55 mol/l, the Bjerrum
length lB ¼ 54.6 nm.
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principle is not taken into account. It can be seen in Fig. 1 that eeff decreases
with increasing magnitude of electric field strength E. Since the value of E
decreases with increasing distance from the membrane charge surface (see,
e.g., [6]), eeff increases with the increasing distance from the charged surface.
In accordance with the results of other authors, it can be concluded that due
to the distinct preferential orientation of water dipoles in the close vicinity
of the charged membrane surface, the effective permittivity eeff near the
membrane surface is reduced relative to its bulk value (see, e.g., [11]).

If the Boltzmann distribution function is assumed also for water
(Langevin) dipoles:

nþ xð Þ ¼ n0e
�C; ð16Þ

n� xð Þ ¼ n0e
C; ð17Þ

�p0jC0 jcoso=e0
D E
nwðxÞ ¼ n0w e
o
; ð18Þ
where

e�p0jC0 jcos o=e0
D E

o
¼

2p
Ð0
p
d cos oð Þe�p0jC0 jcos o=e0

4p
¼ e0

p0jC0 j sinh
p0jC0 j
e0

;

ð19Þ
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a similar procedure as described above leads to the extension of the PB
equation in the form [18]

C
00 ¼ 4plB 2n0 sinhC� n0w

p0

e0

d

dx
ℱ p0jC0 j=e0
� �h i� �

; ð20Þ

where the function ℱ is defined as

ℱ uð Þ ¼ ℒ uð Þ sinh u
u

: ð21Þ

The corresponding effective permittivity (eeff) can be defined as [18]

eeff ¼ 1þ n0w
p0

e0

ℱ p0E=kTð Þ
E

: ð22Þ

Figure 2 shows the dependence of the effective permittivity eeff on the
magnitude of electric field strength E ¼ jf0j calculated within the dipolar
PB theory which takes into account the Boltzmann distribution for water
molecules (Eqs. (18) and (19)) as well as the orientational ordering of water
molecules by considering them as Langevin dipoles (Eq. (22)). It can be seen
in Fig. 2 that according to Eq. (22), the effective permittivity eeff increases
as a function of increasing E. Since the magnitude of electric field strength
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Figure 2 Calculated effective permittivity Eq. (22) as a function of the magnitude of
electric field strength E ¼ jf0j assuming the Boltzmann space distribution of
water dipoles (Eqs. (18) and (19)). Dipole moment of water (Langevin) dipoles is
p0 ¼ 5D, bulk concentration of water is dipoles n0w/NA ¼ 55 mol/l, Bjerrum length
is lB ¼ 54.6 nm.
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in electrolyte solution increases towards the charged membrane surface,
Eq. (22) predicts the increase of eeff in the vicinity of the charged membrane
surface [18]. This is a consequence of the accumulation of water dipoles
near the charged surface (due to Boltzmann distribution for water mole-
cules) which prevails over the decrease of eeff due to an increased orienta-
tional ordering of water molecules in a strong electric field as shown in
Fig. 1. Neglecting the final volumes of ions and water molecules is thus
reflected in the predicted unrealistic increase of eeff near the charged mem-
brane surface [12,18,22].

In Section 3 we first describe the PB theory modified by the excluded
volume principle, that is, the finite volumes of ions are taken into account
within a simple lattice statistics [8]. In the model, each site of the lattice
(of the width as) is occupied by one and only one of the three kinds of
molecules. The ordering of water molecules in electric field is not taken into
account.

Finally, in Section 4 the excluded volume and orientation of water
dipoles are considered within same modified PB theory. The predicted
decrease of effective permittivity eeff near the charged membrane surface
relative to its bulk value is the consequence of two effects, that is, the
depletion of water molecules near the charged membrane surface on the
account of accumulation of counterions, and a pronounced orientational
ordering of water dipoles in the strong electric field in the vicinity of the
charged membrane surface [12].
3. Excluded Volume Effect

A number of different attempts have been made to incorporate
excluded volume effect (i.e., the finite volumes of ions) into the PB
equation. Freise [19] introduced the excluded volume effect by a
pressure-dependent potential, while Wicke and Eigen [20] used a thermo-
dynamic approach, multiplying the numerical density of ions by a factor
containing the number of the vacant sites. The fluctuation potential [16]
due to the self-atmosphere of ion and the ion–ion exclusion volume term
were taken into account in the modified PB equation [21–23]. More
recently, the finite size of ions has been incorporated into the EDL theory
in a different way [24,25], among others by using lattice statistics model
[8,26], leading to the PB equation modified by the excluded volume effect
in the form [8,27] (for monovalent coions and counterions)

d2C xð Þ
dx2

¼ 2e0
2nsn0

kTee0n0w

sinh C xð Þð Þ
1þ 2n0

n0w
cosh C xð Þð Þ ; ð23Þ
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where e is the permittivity of electrolyte solution, e0 the permittivity of the
free space, and ns is the number density of lattice sites: ns ¼ 1/ as

3, where as
is the width of the single lattice site. The x-axis is perpendicular to the
membrane surface and points to the bulk solution. The bulk number density
of water n0w is connected to number density of lattice sites ns and ion bulk
number density n0 as nw0 ¼ ns � 2n0.

The two boundary conditions are

dC xð Þ
dx

j
x ! 1 ¼ 0;

dC xð Þ
dx

j
x ¼ 0

¼ � se0
kTee0

; ð24Þ

s is the surface charge density of the bilayer membrane surface. The first
boundary condition states that the electric field is zero, far away from the
charged surface, while the second boundary condition demands the elec-
troneutrality of the whole system.

The corresponding ion distribution functions are [8,27]

nj xð Þ ¼ ns n0=n0wð Þ exp �jC xð Þð Þ
1þ 2n0

n0w
cosh jC xð Þð Þ Þ; j ¼ þ;�; ð25Þ

where j ¼ þ for cations and j ¼ � for anions. The above described
equations of the PB theory modified by the excluded volume effect assumes
that the center of ions can approach to the x ¼ 0 plane. The number density
of water (Langevin) dipoles nw can be then calculated from the known nþ
and n� as

nw xð Þ ¼ ns � nþ xð Þ � n xð Þ: ð26Þ

Figure 3 shows that for higher values of the surface charge density (jsj),
the counterion number density nþ increases. For very high jsj the counter-
ion number density nþ may saturate close to the charged surface to its close
packing value, while the classical PB theory predicts unreasonable high
values beyond the close-packing value (see also [8,27]). The PB theory
modified by the excluded volume effect given by Eq. (25) thus predicts the
saturation of the counterions near the charged surface for ions of finite size
[8,27,28].

Due to accumulation of counterions near the charged membrane surface
(Fig. 3, left panel), the number density of water molecules in this region may
be reduced substantially (Fig. 3, right panel). Even not considered in a self-
consistent way (i.e., within the above described PB theory modified by
excluded volume the permittivity is a constant), the space dependency of
the permittivity of the electrolyte solution in contact with a charged
membrane surface may be estimated (Fig. 4) by adopting the assumption
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Figure 4 The effective permittivity eeff(x) ¼ 78.5 nw(x)/n0w of the electrolyte solution
calculated for the number densities of counter-ions given in Fig. 3.
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that the permittivity is proportional to the relative density of water mole-
cules (Langevin dipoles):

eeff xð Þ ¼ 78:5
nw xð Þ
n0w

: ð27Þ

In the previous two sections, the orientation of water dipoles and the finite
size of ions in electrolyte solution were treated separately by two models.
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In the second section (Section 2), we considered the orientation of point-like
water molecules, while in the third section (Section 3), the finite volume of
ions and water molecules was taken into account. In the next section
(Section 4), the orientational ordering of water molecules and excluded
volume effect near the planar bilayer membrane surface are considered
simultaneously by modification of PB equation.
4. Excluded Volume Effect and Orientation

of Water Molecules

4.1. Modified Poisson–Boltzmann Equation

As before (see Section 2), we consider a planar charged membrane bilayer
surface in contact with a solution of ions and Langevin dipoles of finite size.
The Langevin dipoles describe water molecules with nonzero dipole
moments (p). The membrane bilayer surface is charged with surface charge
density s. The lattice with an adjustable lattice site is introduced in order to
describe the system of Langevin dipoles and salt ions. All lattice sites are
occupied by ions or Langevin dipoles. For the sake of simplicity, we assume
that the volume of each ion and the volume of a single Langevin dipole are
equal. The free energy of the system F, measured in units of thermal energy
kT, can be written as [12]

F

kT
¼ 1

8plB

ð
C

0
� �2

dV

þÐ nþ xð Þ lnnþ xð Þ
n0

þn� xð Þ lnn� xð Þ
n0

þnw xð Þ lnnw xð Þ
n0w

" #
dV

þ Ð nw xð Þ P oð Þ lnP oð Þh iodV
þl
Ð
ns�nw xð Þ�nþ xð Þ�n� xð Þ½ �dV ;

ð28Þ

where the averaging over all angles o is defined as

F xð Þh io ¼ 1

4p

ð
F x;oð ÞdO: ð29Þ

The first term in Eq. (28) corresponds to the energy of the electrostatic
field. HereC(x) is the reduced potential, dV ¼ A dx is the volume element
with thickness dx, where A is the membrane area. The second line in
Eq. (28) accounts for the mixing free energy contribution of the positive
and negative salt ions, nþ, and n� are the number densities of positively and
negatively charged ions, respectively, nw is the number density of Langevin
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dipoles, n0 is the bulk number density of positively and negatively charged
ions, while n0w is the bulk number density of Langevin dipoles. We assume
f(x ! 1) ¼ 0. The third line in Eq. (28) accounts for the orientational
contribution of Langevin dipoles to the free energy. P xð Þ is the probability
that the Langevin dipole located at x is oriented for an angle o with respect
to the normal to the charged membrane bilayer surface. The last line in
Eq. (28) is constraint due to finite size of particles, imposing the condition
that each site of the lattice is occupied by only one particle (coion, counter-
ion, or Langevin water dipole), ns is the number density of lattice sites:
ns ¼ 1/ as

3 and where as is the width of the single lattice site. At any
position x, we require the normalization condition

P x;oð Þh io ¼ 1 ð30Þ

to be fulfilled. The above expression for the free energy can be rewritten in
the form:

F

kT
¼ 1

8plB

ð
C

0
� �2

dV

þ Ð nþ xð Þ ln nþ xð Þ
n0

þ n� xð Þ ln n xð Þ
n0

" #
dV

þ Ð n x;oð Þ ln n x;oð Þ
n0w

* +
o

dV

þ l
Ð

ns � n x;oð Þh io � nþ xð Þ � n� xð Þ� 	
dV ;

ð31Þ

where the Langevin dipole distribution function is defined as

n x;oð Þ ¼ nw xð ÞP x;oð Þ: ð32Þ

By averaging over all angles o in Eq. (32), the number density of
Langevin dipoles is obtained:

n x;oð Þh io ¼ nw xð ÞP x;oð Þh io ¼ nw xð Þ P x;oð Þh io ¼ nw xð Þ; ð33Þ

where we took into account Eq. (30).
The charges of counterions, coions, and Langevin dipoles contribute to

the average microscopic volume charge density:

% xð Þ ¼ e0 nþ xð Þ � n� xð Þð Þ � dP

dx
: ð34Þ
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The polarization P is given by

P xð Þ ¼ nw xð Þ p x;oð Þh iB; ð35Þ

where hp(x, o)iB is the average value of the Langevin dipole moments p at
coordinate x (see Eq. (7)). P(x) is positive if the polarization vector P points
in the direction of x-axis and negative if P points in direction from the bulk
to the charged membrane surface. The rotational averaging is performed
over all values of o. The Langevin function ℒ(p0jC 0 j / e0) describes the
average magnitude of Langevin dipole moments at given x.

The free energy F ¼ F(nþ, n�, n(x, o)) fully specifies the system.
In thermal equilibrium, F adopts minimum with respect to the functions
nþ(x), n�(x), and n(x, o). The results of the variational procedure are

nþ xð Þ ¼ n0e
�Cþl; ð36Þ

n� xð Þ ¼ n0e
Cþl; ð37Þ

�p0jC
0 jcoso=e0ð Þþl
n x;oð Þ ¼ n0we : ð38Þ
Inserting Eqs. (36)–(38) into the constraint (the last line of Eq. (31))

ns ¼ nþ xð Þ þ n xð Þ þ n x;oð Þh io; ð39Þ

yields

ns ¼ n0e
�Cþl þ n0e

Cþl þ n0we
l e�p0jC0 jcos o=e0
D E

o
; ð40Þ

from where we calculate the parameter l:

el ¼ ns

ℋ
; ð41Þ

where the function ℋ is related to the finite particle size:

ℋ ¼ 2n0 coshCþ e0n0w

p0jC0 j sinh
p0jC0 j
e0

: ð42Þ

In the above derivation of l, we took into account (see Eq. (19))

e�p0jC0 jcoso=e0
D E

o
¼ e0

p0jC0 j sinh
p0jC0 j
e0

: ð43Þ
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Using Eqs. (33) and (38), we get the following expression for the
number density of Langevin dipoles nd(x):

nw xð Þ ¼ n x;oð Þh io ¼ n0we
l e�p0jC0 jcos o=e0
D E

o
: ð44Þ

Taking into account Eqs. (41)–(43), it follows from Eq. (44)

nw xð Þ ¼ n0wns

ℋ
e0

p0jC0 j sinh
p0jC0 j
e0

: ð45Þ

Combining Eqs. (35), (7), and (45) yields polarization:

P ¼ �p0n0wns

ℱ p0jC0 j
e0

� �
ℋ C; jC0 j� � ; ð46Þ

where the function ℱ(u) is defined by Eq. (21). Based on Eq. (46), we can
express the permittivity of the electrolyte solution (e) in contact with the
planar charged membrane bilayer surface as

e ¼ 1þ 1

e0

d jPj
dE

¼ 1þ n0wns
p0

e0

d ℱ=ℋð Þ
dE

; ð47Þ

while the corresponding effective permittivity (eeff) is

eeff ¼ 1þ jPj
e0E

¼ 1þ n0wns
p0

e 0

ℱ=ℋ
E

; ð48Þ

where E ¼ jf0j is the magnitude of the electric field strength.
Inserting the Fermi–Dirac-like distribution functions Eqs.(36), (37), and

expression for polarization (Eq. (46)) into Eq. (34), we get the expression for
the volume charge density in electrolyte solution

% ¼ �2e0n0ns
sinhC
ℋ

þ n0wp0ns
d

dx

ℱ p0jC0 j=e0
� �

ℋ

2
4

3
5; ð49Þ

where we took into account also the equation for the parameter l Eq. (41).
Inserting the volume charge density (49) into Poisson equation

C
00 ¼ �4plB%=e0; ð50Þ
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we get [12]

C
00 ¼ 4plBns 2n0

sinhC
ℋ

� n0w
p0

e0

d

dx

ℱ p0jC0 j=e0
� �

ℋ

2
4

3
5

0
@

1
A: ð51Þ

The differential equation (51) has two boundary conditions. The first
boundary condition is obtained by integration of the differential
equation (51):

C
0
x ¼ 0ð Þ ¼ �4p

lB

e0
sþ nsn0wp0

ℱ p0jC0 j=e0
� �

ℋ
jx¼0

2
4

3
5: ð52Þ

The condition of electroneutrality of the whole system was taken into
account. The second boundary condition is

C
0
x ! 1ð Þ ¼ 0: ð53Þ
4.2. Linearized Modified Poisson–Boltzmann Equation

In the approximation of small electrostatic energy and small energy of
dipoles in electric field compared to thermal energy, that is, small C and
small p0jC0j/e0, Eq. (51) can be expanded in Taylor series up to third order
to get [12]

C
00 ¼

2Cþ 2 � n0
ns
þ 1

6

� �
C3 þ n0w

3ns

p0
e0

� �2
CC

02

1
4plBn0

þ n0w
3n0

p0
e0

� �2 � n0w
3ns

p0
e0

� �2
C2 þ n0w

n0
� n0w

6ns
þ 1

10

� �
p0
e0

� �4
C

02
: ð54Þ

The corresponding boundary condition (52) expanded up to third order is

C
0 ð0Þ ¼ �s=e0

1
4plB

þ n0w
3

p0
e0

� �2
1� n0

ns
C 0ð Þ½ �2 þℬ

� �
 � ; ð55Þ

where

ℬ ¼ p0

e0

� �2

� n0w

6ns
þ 1

10

� �
C

0
0ð Þ

h i2
; ð56Þ
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while the effective permittivity (Eq. (48)) can be expressed as

eeff xð Þ ¼ 1þ 4plB
3

n0w
p0

e0

� �2

1� n0

ns
C2 þ � n0w

6ns
þ 1

10

� �
p0

e0

� �2

C
02

 ! !

ð57Þ

In the limit of very smallC and very small p0jC0j/e0, Eq. (57) transforms
into the well-known expression

eeff xð Þ ¼ 1þ n0wp
2
0

3e0kT
: ð58Þ

Hereafter, Eqs. (54)–(57) are used to calculate the spatial profile of
permittivity of the medium.

Figure 5 shows the spatial variation of permittivity, calculated according to
Eq. (57). The dipolemoment of a singlewater (Langevin) dipolewas chosen to
be 5 Debyes (D) in order to reach the permittivity of pure water 78.5 far away
from the charged membrane surface. The bulk water dipole concentration
(n0w/NA) was chosen 55 mol/l, whereNA is Avogadro number.

Figure 6 shows the number densities of counterions (nþ) and water
(Langevin) dipoles (nw) as functions of the distance from the charged
membrane surface. The results are given for two different bulk concentra-
tions of the involved ions. The number density of counterions decreases
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Figure 5 Calculated permittivity close to charged bilayer membrane surface. The
dipole moment of water dipoles p0 ¼ 5D, the bulk concentration of water dipoles
n0w/NA ¼ 55 mol/l, surface charge density s ¼ �0.05 As/m2, the width of a single
lattice site as ¼ 0.318 nm, the bulk concentration of ions is n0/NA ¼ 0.1 mol/l (adapted
from [29]).
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NA ¼ 55 mol/l, membrane surface charge density s ¼ �0.05 As/m2. The width of a
single lattice site as ¼ 0.318 nm.
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with increasing distance from the charged membrane surface. The number
density of Langevin dipoles (i.e., water molecules) increases with increasing
distance from the charged membrane surface and reaches a plateau value far
away from the charged surface. The depletion of water molecules near the
charged membrane surface also helps that water molecules can better
organize their hydrogen bonding network without ions; therefore it is
favorable that ions which disrupt the water–hydrogen-bonded water net-
work are moved from the bulk towards the charged membrane surface [13].
Near the charged membrane surface, the number density of coions is
negligible when compared with the number density of counterions. The
thickness of EDL increases with decreasing bulk concentration of ions.

The average cosine of the angle o between the dipole vector of Lange-
vin dipoles and the axis perpendicular to the metal surface is given by
equation

cosoh iB ¼
cos oe�p0jC0 jcos o=e0
D E

o

e�p0jC0 jcos o=e0
D E

o

¼ �ℒðp0jC0 j=e0Þ; ð59Þ

where h . . . iB means the averaging over all angleso weighted by Boltzmann
factor (see Eq. (7)). The average cosine hcos oiB as a function of the distance
from the charged surface for different surface charge densities and bulk coun-
terion number densities, is shown in Fig. 7. Figure 7 shows that the Langevin
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dipole moment vectors at the charged membrane surface are predominantly
oriented towards the surface. Far away from the charged membrane surface all
orientations of dipoles are equally probable; therefore hcos oiB ¼ 0 (see
Fig. 7). The absolute value of hcos oiB increases with increasing s
corresponding to stronger orientation of Langevin dipoles. Due to stronger
screening, the absolute value of hcosoiB is decreasing with increasing n0.
5. Phenomenological Model of Spatial

Variation of Permittivity and the Membrane

Surface Potential

We have shown that close to the charged membrane surface the
permittivity profile (Fig. 5) is mainly determined by the depletion of
water dipoles due to accumulated counterions (Fig. 6) and by orientational
ordering of water dipoles (Fig. 7). In this section, the space dependency of
permittivity, previously determined only at small C and small jC0j (i.e., at
small potential, see Fig. 5), is assumed to be more pronounced. In the
phenomenological model presented in this section, we assume a strong
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space variation of the permittivity, which corresponds to large magnitude of
the surface charge density (see also Fig. 4). Based on the results given in
Figs. 4 and 5, the space dependency of the effective permittivity is approxi-
mately described by a simple step function. Similarly, as in Section 4, the
volume charge density in an electrolyte solution is written as

r xð Þ ¼
X
i

nie0ni xð Þ; ð60Þ

where for monovalent ions, the valence ni is

nþ ¼ 1; n� ¼ �1: ð61Þ

The ions are assumed to be distributed according to the Boltzmann
distribution [5,6]:

ni xð Þ ¼ n0 exp �nie0f xð Þ=kTð Þ: ð62Þ

According to the schematic on Fig. 8, the permittivity of the electrolyte
solution is approximately described by a step function (see Fig. 9):

e xð Þ ¼ e2; x < a;
e1; x � a:

�
ð63Þ

By inserting Eqs. (60)–(63) into Poisson’s equation, we obtain the PB
differential equation (see also [5,6]) corresponding to two different regions:

d2f
dx2

¼

2e0n0

e2e0
sinh e0f xð Þ=kTð Þ; 0 � x < a;

2e0n0

e1e0
sinh e0f xð Þ=kTð Þ; a � x < 1:

8>>><
>>>:

ð64Þ

The boundary condition at x ¼ 0 is consistent with the condition of
electroneutrality of the whole system:

df
dx

j0 ¼ � seff
e2e0

: ð65Þ

The validity of Gauss law at x ¼ a, respectively, is fulfilled by the
following equation:

e2
df
dx

ja� ¼ e1
df
dx

jaþ : ð66Þ
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Due to the screening effect of the negatively charged membrane surface
caused by the accumulated cations, we assume that far away from the
charged metal surface the strength of electric field tends to zero:

df
dx

j1 ¼ 0: ð67Þ
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Equations (64) are rewritten in dimensionless form:

d2C

dx2
¼ 2K sinh Cð Þ; 0 � x < 1;

2L sinh Cð Þ; 1 � x < 1;

�
ð68Þ

where the reduced potential C(x) ¼ e0 f(x)/kT is defined as previously
(Eq. (3)) and the reduced length is

x ¼ x

a
; ð69Þ

while the constants are defined as

K ¼ e20n0a
2

e2e0kT
; L ¼ e20n0a

2

e1e0kT
: ð70Þ

Respectively, the boundary conditions for the dimensionless case are

dC
dx


0

¼ � seff ae0
e2e0kT

; ð71Þ

e2
dC
dx


�1

¼ e1
dC
dx

j1þ ; ð72Þ
dC
dx

1 ¼ 0: ð73Þ
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In addition to Eqs. (71)–(73), we consider also the continuity of the
electric potential at x ¼ a. Hereafter, we have a closer look at the derivation
of the solutions of Eq. (68). Equation (68) is multiplied at both sides by 2 dC

dx

d

dx
dC
dx

� �2

¼ 2
dC
dx

d2C

dx2
: ð74Þ

By taking into account the continuity of the electric potential at x ¼ a
and after integration we getð

d
dC
dx

� �2

¼
ð
4K sinh Cð ÞdC; 0 � x < 1; ð75Þ

ð
d

dC
dx

� �2

¼
ð
4L sinh Cð ÞdC; 1 � x < 1: ð76Þ
These transformations lead to

dC
dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ 4K coshC

p
; 0 � x < 1;

� ffiffiffiffiffiffi
8L

p
sinh C=2ð Þ; 1 � x < 1;

�
ð77Þ

where

C ¼ seff e0a
e2e0kT

� �2

� 4K coshC 0ð Þ: ð78Þ

Applying the boundary condition (72) and taking into account Eqs. (77)
and (78) yields

e2
seff e0a
e2e0kT

� �2

�4K coshC 0ð Þ� coshC 1ð Þ½ �
 !1=2

¼�e1
ffiffiffiffiffiffi
8L

p
sinh C 1ð Þ=2ð Þ:

ð79Þ

Nowwe proceedwith the solution of Eq. (77) in the interval 1 � x < 1.
We first rearrange the corresponding expression from Eq. (77) as

dx ¼ �dCffiffiffiffiffiffi
8L

p
sinhC

2

: ð80Þ

Integrating Eq. (80)ðx
1

dx ¼ � 1ffiffiffiffiffiffi
8L

p
ðC xð Þ

C 1ð Þ

dC
sinhC

2

ð81Þ
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gives the following solution:

x� 1 ¼ 1ffiffiffiffiffiffi
2L

p ln
tanh

C 1ð Þ
4

tanhC
4

 !
: ð82Þ

By transforming Eq. (82), we get the final result for C in the form:

C ¼ 4 tanh�1 tanh
C 1ð Þ
4

exp
ffiffiffiffiffiffi
2L

p
1� xð Þ

� �� �
; 1 � x < 1: ð83Þ

It follows from Eq. (83)

C 0ð Þ ¼ 4 tanh�1 tanh
C 1ð Þ
4

exp
ffiffiffiffiffiffi
2L

p� �� �
: ð84Þ

Eqs. (79) and (84) are two equations for two unknown quantities C(0)
and C(1). Eqs. (79) and (84) can be solved numerically to determine the
surface electric potential f(0) ¼ C(0)kT/e0. Figure 10 shows the electric
membrane surface potential f(0) as a function of the relative permittivity in
the highly ordered region of water molecules (e2) (see Fig. 9). It becomes
clear that the absolute value of the electric potential increases with the
decrease of the permittivity e2.
6. Conclusions

Most of the models describing the EDL assume that the permittivity in
the whole system is constant [5–7]. The classical PB theory does not
consider the solvent structure. Therefore the PB theory has been upgraded
by hydration models, where the interplay between solvent polarization and
diffuse double layer takes place [10,12,18,22,30,31]. The study of the
orientational ordering of dipoles at the charged surface has shown that
dipoles predominantly orient perpendicularly to the charged surface [12].
Langevin dipoles were introduced into the PB theory to study the polariza-
tion of the solvent and the space dependency of the permittivity close to the
charged membrane surface [12,18,29]. The spatial decay of the solvent
polarization for increasing distance from the charged membrane surface
was predicted [12].

The presence of ions changes the permittivity of the electrolyte solution
[12,13,18]. Recently, the modified PB equation, taking into account the
finite volumes of ions, was solved numerically in the limit of small electric
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potential and small electric field, where the dipolar nature of water mole-
cules was introduced by Langevin dipoles [12]. The dependence of the
permittivity as a function of the electric potential was given analytically
(Eq. (48)), while the spatial dependency of the effective permittivity was
calculated numerically in the limit of small electric potential and small
electric field (Fig. 5) [12].

In this chapter, the orientational ordering of water dipoles and the
excluded volume effect were explicitly taken into account in the described
modified PB model in order to estimate the space variation of the permit-
tivity in the vicinity of a charged membrane surface in contact with an
electrolyte solution [12,29]. In the limit of small electric potential and small
electric field, it was shown that the dipole moment vectors of water
molecules at the charged membrane surface are predominantly oriented
towards the negatively charged surface, while all orientations of water
dipoles far away from the charged membrane surface are equally probable
(Fig. 7). It was shown that the permittivity profile close to the charged
membrane surface may be significantly influenced by the depletion of water
molecules due to accumulation of counterions. Due to strong accumulation
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of counterions near the charged membrane surface at higher surface charge
densities (Figs. 3 and 6), it can be anticipated that the permittivity near the
charged membrane surface may be significantly decreased at high magnitude
of the surface charge density of the membrane. Therefore, a simple phe-
nomenological model assuming a step function for the space variation of the
permittivity was introduced to study the influence of the space variation of
the permittivity on the membrane surface potential at higher magnitudes of
surface charge density. Both models (phenomenological and statistical
mechanical) complement each other, since the phenomenological model
is not so restricted to small magnitudes of the surface charge, making it a
good supplement to the statistical mechanical approach. Although for larger
surface charge density (as for example in Figs. 3, 4 and 10) the so-called
electrostatic coupling parameter [22] is well above 1, we expect that the
conclusions based on presented results are qualitatively correct and may help
to better understand the combined role of water ordering and finite size of
ions in the properties of the electric double layer.
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